Younger Chemists Committee

Serving the Needs of Early Career Chemists

CIBA Award Winners

Spring 2017 CIBA Award Winners

Linh Pham 

Biography 

Dr. Linh Pham joined Texas A&M University – Central Texas in 2015 as an Assistant Professor of Chemistry.  Since 2007 Dr. Pham has conducted research in multidisciplinary fields, including: nano-material chemistry (quantum dots and quantum wells), magnetochemistry (single-molecule magnets and single-chain magnets) and biochemistry (HIV-1 proteases). Her teaching interests include, but are not limited to, biochemistry, analytical chemistry, inorganic chemistry and instrumental analysis. Dr. Pham is also the recipient of many awards and grants such as the University of Florida Best Teaching Award, American Chemical Society Travel Grant and Service-Learning Grant at Texas A&M University-Central Texas.

Abstract 

Conformational Sampling and Non-Dimer Aggregates of HIV-1 Protease Containing Darunavir Promoted Mutations

 Darunavir (DRV) is a highly potent human immunodeficiency virus protease inhibitor (HIV-1 PR) that is oftentimes effective when drug resistance has emerged against first generation inhibitors.  Characterization of conformational sampling, dimeric structure and stability of six HIV-1PR constructs containing DRV selected mutations were investigated. Stability of the dimeric form of HIV-1 PR is impacted by accumulations of non-active site DRV drug pressure selected mutations that generate higher-order aggregates as interrogated by dynamic light scattering (DLS), differential scanning calorimetry (DSC), spin-labeling electron paramagnetic resonance spectroscopy (EPR), circular dichroism (CD) and differential scanning fluorescence (DSF) studies. The higher-order aggregate is soluble in water and undergoes a reversible transformation to the dimeric state that is either induced by a drop in solution pH or addition of DRV or substrate analog.

Merlis P. Álvarez-Berrios

Biography

Dr. Merlis Alvarez-Berrios received a B.S. degree in chemical engineering from the University of the Atlantic in 2008 and her Ph.D. in chemical engineering from the University of Puerto Rico at Mayaguez in 2014. After completing her graduate studies, she became a postdoctoral research associate at the University of North Carolina, at Charlotte. Currently, she is an assistant professor at the Inter American University of Puerto Rico, Ponce Campus. Her research interests include target-specific drug delivery systems and the application of nanoparticles in the petroleum field.

 Abstract

In vitro evaluation of folic acid-conjugated redox-responsive mesoporous silica nanoparticles for the delivery of cisplatin

The use of cisplatin(IV) prodrugs for the delivery of cisplatin have gained significant attention, because of their low toxicity and reactivity. Recent studies have shown that targeted cisplatin(IV)-prodrug nanoparticle-based delivery systems can improve the internalization of the cisplatin(IV) prodrug. We hypothesized that folic acid-conjugated mesoporous silica nanoparticles (MSNs) containing cisplatin(IV) prodrug could target cancer cells that over- express the folate receptor and deliver the active cisplatin drug upon intracellular reduction. To prove this hypothesis, internalization and localization studies in HeLa cancer cells were performed using flow cytometry and confocal microscopy. The ability of MSNs to escape from the endolysosomal compartments, the formation of DNA adducts, and the cytotoxic effects of the MSNs were also evaluated. Our results confirmed that this MSN-based delivery platform was capable of delivering cisplatin into the cytosol of HeLa cells, inducing DNA adducts and subsequent cell death.

 

Fall 2016 CIBA Award Winners

Benjamin Smith

Biography

Benjamin Smith received a B.A. in chemistry from Lawrence University in 2007 and a Ph.D. from Penn State University in 2013. At Penn State, Ben completed his dissertation, "The Self-and Directed Assembly of Nanowires" under the direction of Dr. Christine Keating. After graduation, he spent one year teaching at Juniata College and is currently assistant professor of chemistry at Saint Francis University. His research interests include nanoparticles and green chemistry. 

Abstract 

Assembling and Aligning Multicomponent Nanowires with van der Waals Forces 

Self-assembly methods create ordered particle arrays by balancing van der Waals, electrostatics, and other forces naturally found within particle systems. While self-assembly is often spontaneous, scalable, and works under ambient conditions, predicting and/or controlling how particles self-assemble requires a strong understanding of particle interactions. Naturally, complex particles (particles with both shape and material anisotropy) have complex particle-particle and particle-substrate interactions. To better understand the assembly behavior of asymmetric particles and to create novel self-assembly methods, we explored the self-assembly behavior of multicomponent nanowires. We examined silica-coated, multi-cored, metallic nanowires (about 4 µm long and 300 nm in diameter). Aqueous solutions of these particles quickly sedimented to the substrate forming particle-dense arrays, which were observed through optical microscopy. To examine small changes in interparticle forces within these systems, we varied both (1) particle segment materials and lengths and (2) the surface materials and patterns. We found that differences in van der Waals interactions (even very small differences) influenced assembly greatly, specifically how particles aligned within their assembled structures. Experimental results were compared to results from Monte Carlo simulations.  

Stafford W. Sheehan

Biography

Stafford Sheehan is founder and CEO of Catalytic Innovations, a start-up company commercializing molecular electrocatalyst and renewable fuel technology. Under Staff's leadership, Catalytic Innovations has developed processes ranging from the reduction of carbon dioxide to ethanol, to electrocatalytic processing of waste water for purification and reuse. He acts as the chief scientist for engineering firm Waste Hub, which is leading the plant-level engineering and commercialization for many similar technologies. He received his undergraduate degree from Boston College, and completed his PhD at Yale University specializing in physical chemistry.

Abstract

Generation of Renewable Fuel using Catalytic Wastewater Electrolysis

Organic-containing waste water from manufacturing in the pharmaceutical, cosmetic, dairy, dye, adhesive, pesticide, and other industries are extremely high volume, hazardous to the environment, and energy-intensive to remediate. In many cases, they possess low pH which further complicates their treatment. Current state-of-the-art technologies to treat organic waste water use multi-step treatment which includes bio-digestion stages, which are unstable, energy-intensive, and costly. Here, we show an alternative method for organic waste water treatment using selective catalytic electrolysis. Using recently discovered surface-bound molecular electrocatalysts, which possess the stability of heterogeneous oxides and the selectivity of homogeneous molecular complexes, we are able to selectively oxidize harmful organic compounds down to ppm concentrations in aqueous environments. 

Spring 2016 CIBA Award Winners

Caroline R Szczepanski

Utilizing Heterogeneous Network Formation to Tune Surface Roughness: A Method to Control Coating Wettability

  

 

 

 

 

Jessica Lee Klockow 

Development of a Multimodal Smart Probe for Imaging Enzyme Activity in Brain Gliomas

 

 

 

Caroline Szczepanski received a BS in Chemical Engineering from Lafayette College in May 2009 and a PhD in Chemical & Biological Engineering from the University of Colorado – Boulder in December 2014. During her graduate studies, she researched the design of heterogeneous polymer networks utilizing polymerization induced phase separation. Since graduating, she has taken a postdoctoral research position at the Université de Nice in Nice, France to study the development of polymer coatings and surfaces with unique surface morphologies to control wettability.

 

Dr. Jessica Klockow received her PhD in Chemistry from the University of Missouri and synthesized fluorescent molecular sensors and logic gates for the direct detection of neurotransmitters in live cells. She is currently a postdoctoral scholar in the Molecular Imaging Program at Stanford (MIPS) and is developing activatable multimodal imaging tools for brain gliomas. Her research interests involve chemical synthesis, fluorescent probes, neuroscience, and in-vivo molecular imaging techniques. 

Fall 2015 CIBA Award Winners

Sébastien Laulhé

ORGN: Division of Organic Chemistry

Tuesday August 18

8:00pm - 10:00pm 

Hall C - Boston Convention & Exhibition Center

Publication Number: 537 

 

 

Shaoguang Zhang

INOR: Division of Inorganic Chemistry

Wednesday August 19

10:35am - 10:55am 

Room 159 - Boston Convention & Exhibition Center

Publication Number: 604 

Sébastien Laulhé grew up in Venezuela, Mexico, and France. After obtaining his Master’s Degree in chemical engineering from the National Engineering Graduate School of Chemistry (ENSCM) in Montpellier, he started a Ph.D. program at the University of Louisville with Michael H. Nantz. Together, they developed new oximation reagents for quantitative high throughput GC-MS analysis of biological samples. After graduating in 2013, Dr. Laulhé became a postdoctoral associate at Duke University working with Jennifer L. Roizen. Dr. Laulhé currently develops catalysts and cross-coupling strategies.

 

 

Shaoguang Zhang obtained his BEn at Beijing Institute of Technology in 2008. He obtained PhD in Chemistry (Advisor: Prof. Zhenfeng Xi and Prof. Wen-Xiong Zhang) in Peking University in 2013. He started as a postdoctoral researcher (Advisor: Dr. Morris Bullock) at PNNL. His research focuses on the utilization and generation of renewable energy, especially on heterolytic cleavage of hydrogen by Mo-based complexes and electrocatalytic oxidation of alcohol by metal complexes with pendant base as functional proton relay.

 

Spring 2015 CIBA Award Winners

Huang Liang 

liang.steven@mgh.harvard.edu

 

 

 

 

  

Michelle L. Personick

mpersonick@fas.harvard.edu

Huan Liang obtained his BSc at Tianjin University in 2003, followed by PhD in Chemistry (Advisor: Professor Marco Ciufolini) in the University of British Columbia in 2010. Then he started as an NSERC fellow (Advisor: Professor E.J. Corey) at Harvard University. In 2012, he accepted an Instructor position (Mentor: Dr. Neil Vasdev) in the  Division of Nuclear Medicine and Molecular Imaging, Harvard Medical School and Massachusetts General Hospital. In 2013, Dr. Liang was promoted to Assistant Professor. His research focuses on the discovery of new chemical methods, new ligands and the understanding of function of biological targets and subsequently transition new biomarkers into disease models.

 

Michelle Personick is a postdoctoral researcher working with Professor Cynthia Friend at Harvard University on the design of mesoscale gold alloy catalysts for energy-efficient chemical transformations. She received her Ph.D. from Northwestern University in 2013 under the guidance of Professor Chad Mirkin, where her research focused on controlling the shape and crystallinity of gold and silver nanoparticles. In the summer of 2015, she will be joining the chemistry department at Wesleyan University as an assistant professor.

Fall 2014 CIBA Award Winners

Danielle A. Guarracino, PhD 

Assistant Professor

The College of New Jersey

guarracd@tcnj.edu

 

Meng (Chloe) Rowland, PhD

Postdoctoral Associate

Johns Hopkins University

www.linkedin.com/in/mengrowland

 From 2010 to the present, Dr. Guarracino has been a tenure-track Assistant Professor at The College of New Jersey, where she has taught undergraduate classes in General Chemistry, Organic Chemistry, Biochemistry, and upper-level Chemical Biology.  Her research focuses on using macrocyclic peptides as first generation therapeutics to probe protein-protein interactions, as well as artificial peptide helical structures. 

 

Meng (Chloe) Rowland is a postdoctoral fellow in the laboratory of Dr. James Stivers at Johns Hopkins University School of Medicine, working to unravel the mystery of DNA repair enzyme’s genome search mechanism.  She received her Ph.D. in organic chemistry with Dr. Michael Best at University of Tennessee, Knoxville, where her research focused on developing chemical tools to characterize membrane-protein binding interactions. 

2014 CIBA Travel Award Spring Meeting Attendees

Yijun Huang 

Yijun Huang is a postdoctoral fellow working with Professor John D Lambris at University of Pennsylvania on the development of new generations of complement inhibitor compstatin. He obtained his PhD degree in Pharmaceutical Sciences with Professor Alexander Doemling at University of Pittsburgh (2011), where his research focused on discovery of small molecule inhibitors of p53-Mdm2 interaction. He obtained his MS degree in Chemistry from Texas Christian University (2008) under the guidance of Professor David E Minter. He also holds BS degree in Chemistry and MS degree in Organic Chemistry from Nanjing University (Nanjing, China).

Yijun Huang is a postdoctoral fellow working with Professor John D Lambris at University of Pennsylvania on the development of new generations of complement inhibitor compstatin. He obtained his PhD degree in Pharmaceutical Sciences with Professor Alexander Doemling at University of Pittsburgh (2011), where his research focused on discovery of small molecule inhibitors of p53-Mdm2 interaction. He obtained his MS degree in Chemistry from Texas Christian University (2008) under the guidance of Professor David E Minter. He also holds BS degree in Chemistry and MS degree in Organic Chemistry from Nanjing University (Nanjing, China).

 

Yijun Huang is a postdoctoral fellow working with Professor John D Lambris at University of Pennsylvania on the development of new generations of complement inhibitor compstatin. He obtained his PhD degree in Pharmaceutical Sciences with Professor Alexander Doemling at University of Pittsburgh (2011), where his research focused on discovery of small molecule inhibitors of p53-Mdm2 interaction. He obtained his MS degree in Chemistry from Texas Christian University (2008) under the guidance of Professor David E Minter. He also holds BS degree in Chemistry and MS degree in Organic Chemistry from Nanjing University (Nanjing, China).

 Wen Zhang 

Wen Zhang joined NJIT’s Newark College of Engineering in the Department of Civil and Environmental Engineering as assistant professor in 2012. Wen received his B.S from Tsinghua University in 2004, M.S. from Tongji University in 2007, and Ph.D. from Georgia Institute of Technology in 2011. His research interests are developing innovative solutions for addressing water-energy nexus challenges with state-of-art nanotechnology and environmental biotechnology. 

2013 CIBA Travel Award Fall Meeting Attendees

Leslie Aldrich

Leslie Aldrich is a postdoctoral fellow working with Stuart Schreiber at Harvard University and the Broad Institute on the development of small-molecule autophagy modulators as tools to study the underlying biology of Crohn’s disease.  She obtained her Ph.D. in synthetic organic chemistry with Craig Lindsley at Vanderbilt University, where her research focused on the total synthesis of alkaloid natural products and the synthesis and optimization of natural product analogs with anticancer activity. She began her career in organic synthesis and chemical biology with Kevin Bucholtz at Mercer University, where she synthesized potential ligands for the PPAR δ nuclear receptor.

 

Joseph Baker

Joseph Baker earned his B.S. in Physics in 2003 from the University of Nevada, Las Vegas. He then studied at the University of Arizona, receiving his Ph.D. in Physics in 2011. While at the University of Arizona, Dr. Baker studied computational biochemistry in the research group of Dr. Florence Tama. In Dr. Tama’s group, his interests included the dynamics of multidrug transporters and bacterial type IV pili. Dr. Baker joined the Voth group in January 2012 as a postdoctoral scholar, where he studies large protein complexes and engages in public outreach activities with the Center for Multiscale Theory and Simulation.

 

Benjamin Stokes

Benjamin J. Stokes received his B.Sc. degree from the University of Wisconsin-Madison in 2004 and completed his Ph.D. studies under the supervision of Tom G. Driver at the University of Illinois at Chicago in 2010. He began postdoctoral research with Matthew S. Sigman at the University of Utah in 2011. He is sponsored by an NIH Ruth L. Kirschstein postdoctoral fellowship.

 

Benjamin Yancey

Benjamin Yancey received a B.S. in 2007, an M.S. in 2009, and completed his Ph.D. in chemistry in August of 2011 at the University of Mississippi. His undergraduate and graduate research was focused on polymer electrolytes and their properties under Prof. Jason Ritchie. His last year of graduate studies, he worked as a research associate at the University of Alabama at Birmingham where he worked on hybrid materials applying for a patent in June 2011 under Prof. Eugenia Kharlampieva. Since September 2011 he has been a Postdoctoral Fellow at UAB under Prof. Sergey Vyazovkin.

2013 CIBA Travel Award Spring Meeting Attendees

Kristin J. Labby

Biography

Kristin Jansen Labby is currently a postdoctoral fellow in the lab of Sylvie Garneau-Tsodikova at the University of Michigan studying aminoglycoside resistance enzymes in tuberculosis. She completed her PhD in the fall of 2012 under the supervision of Richard B Silverman at Northwestern University. Her thesis work concerned mechanistic studies of nitric oxide synthase, an enzyme implicated in several disease states including neurodegeneration. During the 2011-2012 academic year, Kristin participated in Reach for the Stars, Northwestern University’s NSF GK-12 program. Kristin hopes to continue outreach opportunities throughout her independent research career.

Abstract

Introducing medicinal chemistry research to middle school students: a multi-faceted approach from a GK-12 experience 

The NSF GK-12 program Reach for the Stars at Northwestern University presents graduate students with the unique opportunity to serve as “scientist in residence” at a local K-12 school. This presentation details the partnership between graduate fellow Kristin Labby and Pamela Sims, a science teacher at Nettelhorst Middle School in Chicago. The GK-12 experience typically includes regular classroom visits and the design and execution of non-traditional lessons with ties to the graduate fellow’s research. Kristin and her teacher partner went beyond the classroom and culminated the academic year with a student field trip to the Northwestern campus. During their visit, students rotated through five stations, hosted by a diverse group of scientists, with hands-on activities specially designed to include aspects of Kristin’s medicinal chemistry research. This presentation will include specific examples of activities as well as general considerations for adapting such an event to other institutions.

 

Dustin Janes

Biography

Dustin W. Janes is a Postdoctoral Researcher with Christopher J. Ellison at the McKetta Department of Chemical Engineering at the University of Texas at Austin. Applying photochemistry in new, unexpected ways is a major theme of all of his current projects. His main focus is on creating methods to replicate block copolymer thin film patterns continuously and over large areas to enable high-throughput nanopatterning technologies. Prior to this, he earned his B.S. from Tulane University and his Ph. D. from Columbia University with Christopher J. Durning, both in Chemical Engineering. His dissertation concentrated on understanding how sorption and diffusion of small molecules in a polymer was affected by the addition of nanoparticles.

Abstract

Replicating Thin Film Block Copolymer Patterns With Light Activated Chemistries 

To help enable high-throughput nanopatterning technologies, a strategy to replicate nanopatterns formed by the self-assembly of lamellae-forming block copolymer (BCP) was investigated. To accomplish this, liquid compositions (i.e. conformal layers) are placed between the surfaces of the “master” poly(styrene-block-methyl methacrylate) film and transparent “replica” substrate that solidify and covalently bind to the BCP upon exposure to light. The conformal materials able to replicate the BCP pattern were comprised of a multifunctional acrylic monomer, a benzophenone compound, and a visible wavelength photoinitiator. The replication is light activated, scalable to large areas, occurs below the glass transition of the BCP, and takes less than 1 h. Scanning electron micrographs of the replica samples show that specific patterns can be copied. Control experiments conducted with alternative liquid compositions indicate that interfacial photosensitization of the BCP by excited benzophenone is the primary mechanism by which pattern replication takes place.

 

Max Majireck

Biography

Max Majireck is currently a Postdoctoral Fellow at Harvard University and the Broad Institute of MIT & Harvard working with Stuart Schreiber on the development of small molecule probes for various cancer targets.  Prior to this, he earned a Ph. D. in synthetic organic chemistry at Pennsylvania State University under Steven M. Weinreb working on the total synthesis of complex natural products and the discovery of new methodologies for organic synthesis.  As an undergraduate student, he gained 3 years of experience in inorganic synthesis with Prof. Charles E. Kriley (Grove City College) and Ian P. Rothwell (Purdue University).  In addition, he had a valuable summer research experience in chemical engineering at CONSOL Energy Research and Development investigating new technology for the reduction of mercury emissions from coal-fired power plants.

Abstract

Small Molecule Inhibitors of EZH2 

EZH2 is a histone methyltransferase and catalytic subunit of the Polycomb Repressor Complex-2 (PRC2) that selectively methylates histone H3 lysine 27 (H3K27), a pivotal chromatin mark that plays a key role in defining cell states and is misregulated in many human cancers.  One of the primary mechanisms of oncogenesis in these cancers is thought to be caused by an overabundance of the repressive mark H3K27me3 (trimethylated H3K27) and the resultant silencing of crucial tumor suppressor genes.  Very recently, non-Hodgkin lymphomas were identified containing heterozygous mutations of EZH2 at tyrosine 641 (Y641) in the catalytic domain.  In these cancers, a critical wild-type/mutant EZH2 partnership is likely the key mechanism for driving H3K27 trimethylation.   To test this hypothesis, we are developing the first wild-type selective EZH2 inhibitor to 1) perturb the function of wild-type EZH2 in lymphomas harboring heterozygous Y641 EZH2 mutations and 2) In collaboration with the National Cancer Institute's Cancer Target Discovery and Development (CTD2) Network project at the Broad Institute, we will evaluate this compound in 949 extensively characterized and genetically defined cancer cell lines in order to identify genetic signatures that predict sensitivity to EZH2 inhibition.

 

2012 CIBA Travel Award Fall Meeting Attendees

Kathleen Garber

Biography

Kathleen Garber is a postdoctoral researcher with Erin Carlson at Indiana University. Her research is in the field of proteomics, where she is working on the development of chemical methods for the detection of phosphorylated proteins. She obtained her Ph.D. in chemistry with Laura Kiessling at the University of Wisconsin—Madison as an NSF Graduate Fellow. She worked on the development of a glycomimetic scaffold for targeting carbohydrate binding proteins, which she applied to DC-SIGN, a receptor involved in HIV infection. She began her career in bioorganic chemistry synthesizing fluorescent chemosensors with Scott Van Arman at Franklin & Marshall College.

Abstract

Chemical tools for the selective detection of phosphorylated proteins

Protein phosphorylation is a ubiquitous posttranslational modification that regulates cell signaling in both prokaryotes and eukaryotes. The dysregulation of kinases and phosphatases has been linked to many disease processes in humans, including cancer. Accordingly, protein kinases are important drug targets in the pharmaceutical industry. Kinases have recently been identified as potential drug targets in the search for antibacterial agents. Although the study of phosphorylated proteins has made great progress in the last decade, global phosphoproteomics studies are still challenges for several reasons, including the instability of the phospho-amino acid bonds and the low abundance of phosphoproteins. These issues are particularly exacerbated when examining phosphorylation at sites other than Ser, Thr and Tyr. To address these challenges, we are pursuing the development of a chemical method capable of specifically targeting phosphorylated amino acids in order to identify phosphoproteins from complex biological samples.

Ashley Galant 

Biography

Ashley Galant obtained a B.S. in Biochemistry from Denison University in Granville, OH, and her PhD in Plant Biology from Washington University in St. Louis, MO. Her graduate research focused on the characterization of the soybean thiol-redox proteome, including the crystal structure of the enzyme homoglutathione synthetase. Currently, she is a postdoctoral Research Chemist with the USDA-ARS, Citrus and Subtropical Products Unit. There, she is investigating the nanostructure and stability of the hydrocolloid pectin as a component of beverage clouds, and laying the groundwork for development of an industry-applicable rapid detection assay for monitoring product quality.

Abstract

Characterization of pectin from Citrus sinensis (sweet orange) juice.

In plants, pectin is one of a group of long-chain polysaccharides that are synthesized for the purposes of maintaining cellular structural integrity. While its core element is a backbone of α-( 1,4)-galacturonic acid residues, its chemical composition can be quite variable, encompassing arabinan- and galactan- based decorations, methyl and acetyl esterification, etc. Due to its relative abundance and utility as a thickening agent, pectin is incorporated into a wide variety of food products. As in plants, the presence of different modifications can alter pectin’s rheological properties, making pectin from some sources better suited to particular applications. Globally, the majority of pectin is extracted from oranges, and while the yield and composition of pectin from orange peels have been relatively well characterized, comparatively less is known about the pectin found in processed orange juice. Here we report new insights on the chemical composition of pectin from frozen concentrated orange juice.

Mindy Levine 

Biography

Professor Mindy Levine received her PhD from Columbia University, where she worked with Ronald Breslow studying the origin of homochirality. She then spent two years at MIT doing an NIH-funded post-doctoral fellowship with Professor Timothy Swager. Dr. Levine started her independent career at the University of Rhode Island in 2010, studying supramolecular organic chemistry. She currently supervises a research group of 3 graduate students and 4 undergraduate students. She has obtained numerous internal grants and travel awards to support her research group.

Abstract

Synthesis of fluorescent macrocycles and polymers by click chemistry

Reported herein is the synthesis of a variety of fluorescent macrocycles and polymers via the Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. The macrocycles are synthesized in one step from bis-alkynyl anthracenes and biphenyl bis azides; the conjugated polymers are synthesized from the same anthracene moieties and phenyl bis-azides. The resulting fluorescent molecules can be used for a variety of applications, including the fluorescent sensing of toxic polycyclic aromatic hydrocarbons and nitroaromatic explosives. Both of these sensing applications are discussed herein.

2012 CIBA Travel Award Spring Meeting Attendees

Jeffery Peterson - State University of New York, College at Geneseo 

Wednesday, March 28, 2012 06:00 PM
Single Molecules: Theory Meets Experiment (06:00 PM - 09:00 PM)
Location: San Diego Convention Center, Hall D

 “Simultaneous Measurement of Chargeand Fluorescence from Single CdSe Quantum Dots.”

Jeffrey Peterson is currently an assistant professor of chemistry at SUNY Geneseo.  He earned his PhD in chemistry from the University of Rochester working with Todd Krauss, and was a National Research Council postdoctoral fellow at JILA-NIST with David Nesbitt.  His current research interests include novel multiparameter approaches to investigate single molecule phenomena, with an emphasis on nanomaterial photophysics.

 

Katherine Windsor - Vanderbilt University

Wednesday, March 28, 2012 07:00 PM
Chemistry of Life, Biologically-Related Molecules and Processes, Heterocycles and Aromatics, Metal-Mediated Reactions and Syntheses (07:00 PM - 10:00 PM)
Location: San Diego Convention Center, Room 20

 “Capture-and-Release of Alkynyl Peptides”

Katherine Windsor is an NIEHS postdoctoral fellow with Ned A. Porter at Vanderbilt University.  Her research in the field of lipid oxidation chemistry focuses on the synthesis of alkynyl-derivatized peptides and small molecules and the development of a cobalt-based capture-and-release method for these alkynyl compounds.  In 2010, Katherine completed her PhD in organic chemistry with Robert J. McMahon at the University of Wisconsin-Madison, where she studied the reactivity of carbon-rich, enediyne-containing compounds.  She obtained her undergraduate degree in chemistry from the University of Notre Dame, where research with Xavier Creary initiated her interest in physical organic chemistry.

 

Tirandai Hemraj-Benny Queensborough Community College

 “Solution-Phase Synthesis of Mg Nanoparticles for Applications in Single-Walled Magnesium Nanocomposite Materials.”

TirandaiHemraj-Benny is an Assistant Professor of Chemistry in the Chemistry Department at Queensborough Community College,CUNY.  She joined the department in August 2008 after spending a year and half as an Adjunct Professor in the Chemistry and Physics Department at Old Westbury College, SUNY. Dr. Hemraj-Benny received her baccalaureate degree from York College and her doctoral degree from Stony Brook University, SUNY in 2006. Her research interest involves the purification and functionalization of Single-Walled Carbon Nanotubes (SWNTs). She is also interested in increasing the learning outcomes of non-science majors in studying chemistry.

 

Modi Wetzler - Clemson University

 “Cellular Tomography of C. alibcans and E. coli Treated with Lethal and Sub-lethal Concentrations of LL-37.”

ModiWetzler graduated with a double major in Chemistry and English for the State University of New York, Buffalo, and then received his Ph.D. in Chemistry from the University of California at Berkeley in 2007.  Dr. Wetzler then began a postdoctoral research appointment with Prof. Annelise Barron at Stanford University studying the microcidal mechanisms of antimicrobial peptides and peptoids; work which he continues today as a Research Assistant Professor at Clemson University.

2011 CIBA Travel Award Spring Meeting Attendees

Jeff Johnson - Hope College

Mechanistic insights into the rhodium-catalyzed activation of carboncarbon single bonds”

Jeff Johnson began studying chemistry as an undergraduate at Gustavus Adolphus College. Following graduate studies at the University of Wisconsin-Madison under the supervision of Chuck Casey, Jeff headed west for an NIH postdoctoral fellowship with Tomislav Rovis at Colorado State University. These experiences covered a breadth of inorganic and organic chemistry, including mechanistic analysis, the development of organic methodology and natural product synthesis. Since 2007 Jeff has been an assistant professor of chemistry at Hope College in Holland, MI. His research focuses on the mechanistic elucidation of carbon-carbon bond activation reactions and the development of transition metal-catalyzed organic methodology.

 

John Kyndt – University of Arizona

“Optimizing Algae for Competitive Biofuel Production”

Dr. John Kyndt is a biochemist who is currently working in the field of Algae for Enhanced Biofuel production. He obtained his PhD at the University of Ghent in Belgium and is currently a Research Assistant Professor at the University of Arizona (Tucson). He has ample publications and one patent in the area of photo-sensing and signaling in biological systems. As part of continuing education he recently received an Associate certificate in Entrepreneurship from the McGuire Entrepreneurship Center (Eller College of Management, University of Arizona).

 

Justin Walensky – University of Missouri, Columbia

“Synthesis and reactivity of Group 11 amidinate complexes”

Justin was born in Albany, NY but moved to Florida in high school. He obtained his BA Chemistry from New College of Florida and did most of his undergraduate research at Lawrence Livermore National Laboratory with Annie Kersting. In 2009 he obtained his PhD from the University of California, Irvine with William J. Evans and went to Los Alamos National Laboratory to work with Richard Martin learning density functional theory. His postdoctoral studies were conducted at Texas A&M University with Drs. John Fackler, Oleg Ozerov and Michael Hall. He is now an assistant professor at the University of Missouri, Columbia.

 

Kristin Wustholz – College of William and Mary

“Identification of Organic Dyes and Pigments in Oil Paints using Surface-Enhanced Raman Microspectroscopy

Kristin L. Wustholz is an Assistant Professor of Chemistry at the College of William and Mary. She received her Ph.D. in 2007 from the University of Washington studying single-molecule fluorescence in dyed salt crystals in the laboratories of Bart Kahr and Philip J. Reid. Her postdoctoral research with Richard P. Van Duyne at Northwestern University focused on surface-enhanced Raman spectroscopy (SERS) and plasmonics of individual molecules and nanoparticles. At William and Mary, her research focuses on studying the optical properties of dyes in organic-based solar cells and historical artworks.ages, and other content

Advertise with YCC!

Do you have an event, award, or other opportunity that is relevant to younger chemists? Whether it’s happening during the National Meeting or anytime throughout the year, we’d be happy to help publicize. Please provide all relevant information via the web form here: bit.ly/YCC-COM-FORM